N37-Acid Base

Weak Problems

N37-Acid Base

Yay, ICE Tables are back!

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

Step \#1: Write the dissociation equation

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+}
$$

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

Step \#2: ICE it!

$$
\begin{array}{cccc}
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrows & \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} & +\mathrm{H}^{+} \\
\mathrm{I} & 0.50 & 0 & 0 \\
C & -x & +x & +x \\
E & 0.50-x & x & x
\end{array}
$$

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

Step \#3: Set up the law of mass action
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+}$
E $0.50-x \quad x \quad x$

$$
1.8 \times 10^{-5}=\frac{(x)(x)}{(0.50-x)} \cong \frac{x^{2}}{(0.50)}
$$

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

Step \#4: Solve for \mathbf{x}, which is also $\left[\mathrm{H}^{+}\right]$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+}$
E $0.50-x \quad x \quad x$

$$
1.8 \times 10^{-5}=\frac{x^{2}}{(0.50)} \quad\left[\mathbf{H}^{+}\right]=\mathbf{3 . 0} \times 10^{-3} \mathbf{M}
$$

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

Step \#5: Convert [H^{+}] to pH
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+}$
E $0.50-x \quad x \quad x$

$$
p H=-\log \left(3.0 \times 10^{-3}\right)=4.52
$$

Reaction of Weak Bases with Water

The base reacts with water, producing its conjugate acid and hydroxide ion:
$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=4.38 \times 10^{-4}$

$$
K_{b}=4.38 \times 10^{-4}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}
$$

$\underline{K}_{\mathrm{b}}$ for Some Common Weak Bases

Mäny students struggle with identifying weak bases and their conjugate acids. What patterns do you see that may help you?

Base	Formula	Conjugate Acid	$\mathbf{K}_{\mathbf{b}}$
Ammonia	NH_{3}	$\mathrm{NH}_{4}{ }^{+}$	1.8×10^{-5}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	4.38×10^{-4}
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	5.6×10^{-4}
Diethylamine	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{2}{ }^{+}$	1.3×10^{-3}
Triethylamine	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}$	4.0×10^{-4}
Hydroxylamine	HONH_{2}	$\mathrm{HONH}_{3}{ }^{+}$	1.1×10^{-8}
Hydrazine	$\mathrm{H}_{2} \mathrm{NNH}_{2}$	$\mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}$	3.0×10^{-6}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	3.8×10^{-10}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	1.7×10^{-9}

Reaction of Weak Bases with Water

The generic reaction for a base reacting with water, producing its conjugate acid and hydroxide ion:

$$
\begin{gathered}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
K_{b}=\frac{\left[B H^{+}\right]\left[O H^{-}\right]}{[B]}
\end{gathered}
$$

(Yes, all weak bases do this - DO NOT make this more complicated then it needs to be.)

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of ammonia, NH_{3}, $K_{b}=1.8 \times 10^{-5}$?

Step \#1: Write the equation for the reaction $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of ammonia, NH_{3}, $K_{b}=1.8 \times 10^{-5}$?

Step \#2: ICE it!
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

I	0.50	0	0
C	$-x$	$+x$	$+x$
E	$0.50-x$	x	x

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of ammonia, NH_{3}, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$?

Step \#3: Set up the law of mass action
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$

$$
\begin{aligned}
& \text { E } 0.50-x \quad x \\
& 1.8 \times 10^{-5}=\frac{x}{(0.50-x)} \cong \frac{x^{2}}{(0.50)}
\end{aligned}
$$

Can use the 5\% rule because
$K<1$ and K at least 1000 time smaller than [initial]

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of ammonia, NH_{3}, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$?

Step \#4: Solve for \mathbf{x}, which is also $\left[\mathrm{OH}^{-}\right]$
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$
E $0.50-x \quad x \quad x$

$$
1.8 \times 10^{-5}=\frac{x^{2}}{(0.50)}
$$

$\left[\mathrm{OH}^{-}\right]=3.0 \times 10^{-3} \mathrm{M}$

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of ammonia, NH_{3}, $K_{b}=1.8 \times 10^{-5}$?

Step \#5: Convert [OH^{-}] to pH
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$
E $0.50-x \quad x \quad x$
pOH $=-\log \left(3.0 \times 10^{-3}\right)=4.52$

$$
p H=14.00-p O H=9.48
$$

Remember...

You can convert back and forth from Ka to Kb and vice versa. If you are given Ka for an acid but are doing problems with the acid's conjugate base you can use that Ka to find the Kb that you need.

$$
\begin{gathered}
K a \times K b=K w \\
K a \times K b=\left(1 \times 10^{-14}\right)
\end{gathered}
$$

